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Druggability predictions are important to avoid intractable targets and to focus drug discovery efforts
on sites offering better prospects. However, few druggability prediction tools have been released and
none has been extensively tested. Here, a set of druggable and nondruggable cavities has been compiled
in a collaborative platform (http://fpocket.sourceforge.net/dcd) that can be used, contributed, and
curated by the community. Druggable binding sites are often oversimplified as closed, hydrophobic
cavities, but data set analysis reveals that polar groups in druggable binding sites have properties that
enable them to play a decisive role in ligand recognition. Finally, the data set has been used in
conjunction with the open source fpocket suite to train and validate a logistic model. State of the art
performance was achieved for predicting druggability on known binding sites and on virtual screening
experiments where druggable pockets are retrieved from a pool of decoys. The algorithm is free,
extremely fast, and can effectively be used to automatically sieve through massive collections of
structures (http://fpocket.sourceforge.net).

Introduction

Despite advances in both experimental and computational
fields, it is estimated that around 60% of drug discovery
projects fail because the target is found to be not
“druggable”.1 Drug discovery project failures are very expen-
sive, and understanding the difficulties associated with a
prospective target is essential to balance investment risks.
Since the publication of “the druggable genome”2 and its
estimation of the number of therapeutically useful proteins in
the human genome, druggability has gradually becomepart of
the target validation process. Traditional target validation
tries to assess whether or not alteration of the normal activity
of a potential target can have some significant therapeutic
effect. The druggability concept adds a structural dimension
and evaluates the likelihood that small drug-like molecules
can bind a given target with sufficient potency to alter its
activity. Several structure-based druggability prediction
methods have been published (reviewed in ref 3). Notable
contributions in this domain were first done by the group of
Hajduk et al.,4,5 who usedNMR-based fragment screening hit
rates as a measure of druggability. The model, based on a
simple regression analysis, used descriptors like the surface
area, the polar/apolar contact area, the roughness, and the
number of charged residues in the binding pocket. In 2007,
Cheng et al.6 published a very simple model to estimate the
maximum affinity that an ideal drug-like molecule could have
for a given binding site. This model was remarkable because
correct predictions were obtained on the assumption that
binding affinity of drug-like molecules may derive exclusively

from the hydrophobic effect. Drug-target molecular recogni-
tion is, nevertheless, a more complex phenomenon,7 and as
our understanding of druggability gradually improves, it will
influence our view of the drug binding event, just like phar-
macokinetics and drug-likeness have influenced each other.8,9

With few exceptions,10 druggability predictions are based
on empirical structure-activity relationships, which require a
substantial data set on which to train and validate the model.
In that regard, the pioneering studies carried out at Abbott
and Pfizer are particularly important because they provided
an initial pool of test cases which has facilitated subsequent
developments.11 However, these are still limited and, because
the druggabilty concept allows for different interpretations,
the classification given to some of the targets is debatable. In
this study we unify the previous sets and extend them with
further examples, adhering to Cheng’s et al. definition of the
term “druggable”, i.e., capable of binding oral drugs. Un-
doubtedly, the enormous range of binding affinities and
bioavailability rates exhibited by this drug class, as well as
the fact that some of these molecules are in fact pro-drugs,
introduces a fair amount of ambiguity to the definition.
Nevertheless, druggability scores will be extremely useful even
if they can only provide a qualitative classification between
“druggable”, “borderline”, and “non-druggable”. To facil-
itate further studies, to promote community involvement in
the generation of a larger data set, and to reach a wider
consensus on the druggability classification, we have made
our test set publicly available and editable (http://fpocket.
sourceforge.net/dcd).

Initial studies set the path for druggability predictions, but
the resulting algorithms were not made available.4,6 More
recently, Schr€odinger have used Cheng’s data set to endow
their SiteMap cavity detection program with a druggability
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score (Dscore),11 but it was trained and presented for usage in
specific target validation. Thus, the user has to select a very
precise zone for performing the druggability prediction. Be-
cause themethodwas trained to estimate druggability of well-
defined cavities, itmight notbe suitable to assess themultitude
of cavities that occur in protein structures, many of which
have no reported functional role.12 Automatic predictions on
large structural databases would offer the opportunity to
identify druggable cavities on sites or targets that might not
be considered a priori, such as allosteric sites or proteins for
which a therapeutic rationale has not been fully developed.
With this goal in mind, the work presented in this article
describes a new structure-based target druggability prediction
score coupled to the open source cavity prediction algorithm
fpocket.13 We demonstrate the ability of the method to
accurately evaluate the druggability of automatically detected
cavities, which allows us to correctly rank binding sites both
across and within protein structures. At 2 to 4 s per averaged-
sized structure, the method is at least 1 order of magnitude
more efficient than SiteMap, and the whole of the Protein
DataBank (PDBa) can be processed in a fewdays ona normal
computer. fpocket, including the herein presented druggabil-
ity score, is freely available for download at http://www.
sourceforge.net/projects/fpocket.

Last, we discuss which cavity descriptors are more useful to
detect druggable cavities and what they tell us about mole-
cular recognition between proteins and drugs. As shown in
previous studies, hydrophobicity correlates particularly well
with drug binding sites but the implication of a hydrophobi-
city-explains-all model such as the MAPPOD

6 is that the ideal
binding site is a closedand“greasy” cavity.Even in the cavities
that more closely resemble this description (e.g., the hormone
binding site of nuclear receptors), polar interactions play a
fundamental role in binding, selectivity, or mediating the
biological response.14 New evidence is presented here for the
special characteristics of the polar groups present in binding
sites, which provides a more complex and realistic picture of
drug-protein molecular association.

Results and Discussion

Compilation of an Open Data Set. A set of protein-oral
drug complexes was obtained crossing the list of marketed
oral drugs provided by Vieth et al.15 with the PDB.16 The
DrugBank17,18 target information was then used to ensure
that the complex corresponds to the actual drug-target pair.
Visual inspection ensued to classify the complex as drug-
gable, difficult (e.g., in the case of prodrugs), or undruggable
(e.g., in the case of nondruglike ligands). Cheng’s data set6

and the public part of Hajduk’s data set4 were added to
obtain the druggability data set (DD) used in this study.
As most targets are represented by several structures, and
to avoid too much bias toward certain protein families, a
nonredundant druggability data set (NRDD) was estab-
lished using a 70% identity cutoff. The composition of the
data sets is summarized in Tables 1 and 2.

The notion of druggability is often riddled with uncer-
tainty and classification can be difficult and may evolve over
time. A good example of that is the different classification
given by Cheng et al. to the related serine proteinases

thrombin and factor Xa as “difficult” and “druggable”,
respectively.6 As discussed by Halgren, they share common
characteristics and it is likely that, eventually, thrombin will
become “druggable” although it is an objectively difficult
target.11 For this reason, we deemed necessary to leave the
classification of targets open for discussion. Furthermore,
we make the data set public in an attempt to instigate parti-
cipation of scientists from the field into the creation and
design of a unified data set. As demonstrated in the docking
arena, the establishment of general benchmarks is important
to ensure a fair evaluation of prediction performance.19,20 In
the case of druggability predictions, some targets are more
easily predicted than others and, even for the same protein,
classification may depend on the particular conformation
adopted by the receptor. The use of a common data set will
facilitate further developments in the field and avoid biases
when comparing methodologies. The Druggable Cavity

Table 1. Composition of the DD Data Set; For Comparison, The
Composition of the Cheng and Hajduk Data Sets Are Also Shown

no. of protein structures

NRDDa DDb Chengc Hajdukd

druggability

classification

holo holo apo total holo holo

druggable 45 773 146 919 17 (43) 35

nondruggable 20 75 9 84 4 (10) 37

prodrug 5 60 7 67 6 (10)

total 70 908 162 1070 27 (63) 72
aNonredundant data set, one structure per protein. bTotal number of

structures in the druggability data set. cReference 6 number of proteins
and, in brackets, number of structures. dReference 4 it contains only one
structure per protein.

Table 2. Distribution of Structures in DD per Function of the Protein,
As Annotated in Uniprot

druggability

no. of

structures function

average

resolution

druggable 170 lyase 1.76

150 hydrolase 1.97

149 kinase 2.02

138 nuclear hormone receptor 2.06

123 oxidoreductase 1.76

55 Hya, Prb 1.98

42 Hya, Prb, Trc 2.49

41 Trc, Oxf 2.08

6 structural protein 2.85

6 transport protein 1.84

4 ligase 2.17

4 transferase 2.30

3 isomerase 1.78

3 GPCR 3.20

nondruggable 42 Hya, Prb 2.12

21 hydrolase 1.95

11 transferase 2.32

4 Lyase 2.18

3 Trc, Ki
d 2.03

3 oxidoreductase 1.98

1 Hya, Prb, Trc, Poe 2.10

prodrug binding 39 Hya, Prb 2.05

22 hydrolase 1.85

3 oxidoreductase 2.82

3 penicillin binding TMP 2.73
aHydrolase. bProtease. cTransferase. dKinase. ePolymerase. fOxi-

doreductase.

aAbbreviations: ASA, accessible surface area; DD, druggability data
set; DCD, druggable cavity directory; MOc, mutual overlap criterion;
NRDD, nonredundant druggability data set; PDB, Protein Data Bank;
ROC, receiver operator characteristics.
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Directory (DCD) is a web-based platform that allows multi-
ple users to upload known cavities (identification by PDB
code and ligand Hetero Atom Identifier) and assign a value
to their druggability in an arbitrary scale from 1 (not
druggable) to 10 (druggable). These uploads are then vali-
dated by a set of experts (validators) in the field in order to be
part of the final data set. Only registered users can upload/
validate data. However, anonymous users can access and
download the validated data set. The PDB structural data-
base is growing steadily, thus we highly encourage all
contributors of the field (medicinal chemists, structural
biologists, molecular modellers, etc.) to register, participate,
and use this platform, allowing more robust future training/
validation cycles for upcoming methods or for retraining of
existing methods and scores. The project is available at
http://fpocket.sourceforge.net/dcd.

On the Role of Polar Atoms in Druggable Binding Sites.

Models with predictive capacity may inform about the
physicochemical basis of the underlying process. A good
example at hand is the famous rule of five, which predicts
drug-likeness based on descriptors related to pharmacoki-
netics (and very particularly to passive membrane permea-
tion).21 Similarly, it would be desirable that construction of
druggability models could help identify the basis of molec-
ular recognition of drugs by their targets. The Cheng model
tells us that the essential feature of a drug binding site is that it
should be closed and lipophilic. This was justified on the basis
that electrostatic interaction and desolvation energies act in
opposition, and the combination of the two is expected to
make an insubstantial contribution in the case of charged or
polar groups.6 Nevertheless, the contribution of polar inter-
actions is context dependent, and a single hydrogen bond can
contribute as much as 1.8 kcal/mol,22 comparable to the
hydrophobic gain provided by the side-chain of a Val
residue.23 The same applies to ionic interactions.24 The fact
that polar groups play a fundamental role in binding affinity is
also supported by the observation that they often constitute

anchoring points, featuring predominantly in pharmacopho-
ric models of binding sites.25 Furthermore, potency is just one
of the many factors required for a drug-target complex to
result in biological activity. Drugs also have to recognize their
target with certain specificity and maintain a stable and
specific 3Darrangementwithin the binding site to be effective.
These properties are typically associated with polar interac-
tions, and it seems reasonable to expect that polar groups in
binding sites should have some differential properties with
regard to the rest of the protein surface. The fact that polar
groups are considered irrelevant in Cheng’s model or have a
negative contribution to druggability in the case of Hajduk
et al.4,6 may wrongly lead to the notion that the ideal drugg-
able site is a completely hydrophobic cavity.Wehave searched
for descriptors with predictive capacity, with the aim of
getting an insight on the underlying principles of drug recog-
nition by their targets.

In agreement with previous reports, a predominantly
lipophilic composition of druggable binding sites is con-
firmed in this bigger data set. They typically contain only
20-40% of polar surface versus 40-60% for nondruggable
cavities (Figure 1A). Focusing on polar atoms, we find that,
on average, 70% of them have very small solvent exposed
areas (<10 Å2), whereas in nondruggable cavities the propor-
tion decreases to 50%. Considering together the small solvent
exposed area of polar atoms and the preponderance of non-
polar atoms, it becomes evident that, in druggable binding
sites, protein-ligand hydrogen bonds are surrounded by a
hydrophobic environment. In such low dielectric medium,
electrostatic interactions become stronger. Very recently, this
effect has been quantified in proteins, demonstrating that
hydrogen bonds can be up to 1.2 kcal/mol stronger in hydro-
phobic environments.26This clearly indicates that, beyond the
obvious gain in hydrophobic potential, a decrease in the polar
surface ratio can have the paradoxical effect of increasing the
hydrogen bonding potential of the binding site. Without
diminishing the importance of hydrophobic interactions, this

Figure 1. Distribution of (A) the fraction of polar ASA of the pocket and (B) the ASA profile slope ratio on the drugability data set (DD).
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view marries better with the common perception of hydrogen
bonds as key elements in drug-protein binding.

Among other descriptors, we investigated the change in
accessible surface area (ASA) as a function of the radii used to
represent the atoms (seeMaterials andMethods). Being loca-
ted in concave regions (cavities), the surface area of a binding
site decreases as longer atomic radii are used. Figure 1B shows
the ratio of ASA change between polar and nonpolar areas.
The different behavior of druggable and nondruggable cav-
ities is highly significant, suggesting that a fundamental aspect
of molecular recognition must be associated with this obser-
vation. Intriguingly, in nondruggable cavities, the decrease is
similar for polar and nonpolar surface areas (average ratio
is 1), whereas in druggable cavities, the polar surface area
decreases at a much slower rate (average ratio is 3). This
means that, in druggable cavities, polar atoms tend to pro-
trude from the cavity surface,making themselves available for
interactions (see Figure 6 for a graphical representation). We
postulate that the increased protrusion of polar atoms in
druggable cavities is fundamental to increase their visibility,
rendering them available for interactions and extending the
range on which they can exert their selective action. These
results also prompted us to investigate the effect of the local
environment on the energetics of association of polar groups.
In a separate paper (Schmidtke et al., inpreparation),we show
that the type of local environment found in druggable cavities
protects the hydrogen bonds formed between the ligand and
the receptor, effectively locking the ligand and permitting
longer residence times. Kinetic stability (both of the complex
and the binding mode) is another fundamental property of
protein-drug complexes that cannot be explained simply on
the basis of shape and lipophilic interactions.

Druggability Score. A druggability score was trained and
validated on the NRDS, following the protocol described in
Materials and Methods. The result of a 10-fold bootstrap
run on the learning and internal validation sets is depicted in
parts A and B of Figure 2, respectively. The mean prediction
result is represented as solid black line, which shows good
and stable enrichment. Each cross-validation result is repre-
sented as score-colored dashed line. Half of the NDRS was
set aside as external validation set, onwhich the performance
of the average model resulting from the learning process was
tested (Figure 2C). The resulting scoring function is a two-
step logistic function represented by eqs 1-3 and para-
meters in Table 3 (Materials and Methods). It should be

noted that the final formula reflects the need to provide
robust predictions in spite of the variability introduced by
the automated pocket detection algorithm. Although indi-
vidually informative, the descriptors in Figure 1 did not yield
very robust models during the 10-fold bootstrap learning
and validation procedure. These ASA-based descriptors
gather information on atomic detail, but as the fpocket
cavity prediction can be rather variable from one structure
to another or from one conformer to another, their corre-
sponding values are not sufficiently consistent. Instead, the
most important descriptor in terms of predictive perfor-
mance is the mean local hydrophobic density of the binding
site. This descriptor combines size and spatial distribution of
hydrophobic subpockets into a single number. The two other
descriptors used to predict druggability are the hydrophobi-
city and normalized polarity scores, both of which refer to
the physicochemical character of the amino acids lining the
pocket. It is noteworthy that both contribute favorably to
the score, indicating that both hydrophobic and polar resi-
dues can make the binding site more druggable. Again, the
residue-based character of theses descriptors makes them
more granular, but they also show far less variability than
atom-based descriptors during the construction of the final
scoring function. As one of the main aims of this scoring
function is its high-throughput applicability, it must deliver
robust predictions in spite of the varying definition of the
binding site provided by the automatic pocket detection
algorithm. Thus we would like to emphasize that the scoring
function reflects the application for which it has been
designed. Descriptors such as those described in Figure 1
are more interpretable and provide a finer level of detail but
may be better suited for supervised applications such as
predicting the druggability of known binding sites.

As the score is indented for high-throughput and fully auto-
matic predictions, it is necessary to assess its robustness across
different crystal structures of the same target. With that pur-
pose, the scoring function established with the NRDS was
applied to the whole of the DD. This is a major difference with
previous methods. Hajduk et al.4 used a single structure per
protein, whereas Cheng et al.6 used a variable number of struc-
tures, but with no apparent logic. For instance, p38 MAP
kinase, for which multitude of structures are available in the
PDB, is represented by a single structure (1KV1; DFG-out
conformation). Figure 3 illustrates the average score and the
standard deviation for each target in the data set. Satisfactorily,

Figure 2. ROC curves for the model building. (A) Training on a total of 74 cavities, (B) internal validation on a total of 146 cavities,
(C) external validation on a total of 220 cavities. AUC: area under the curve.
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the standard deviation is low at both ends of the distribution.
Variability is larger for scores approximating 0.5, but this is a
natural consequence of using a logistic model. Another cause
for variability is the pocket prediction itself. In the caseof buried
and fairly rigid cavities such as the nuclear hormone receptors,
the pocket detection algorithm produces consistent results and
the druggability score is very stable. In solvent exposed or
flexible cavities, the automated pocket detection may yield
significantly different binding site predictions and the drugg-
ability score may diverge. HDAC8 or CDK2 exemplify this
situation, as manifested by very large standard deviations and
individual predictions ranging from nondruggable to very
druggable. For instance, the average drug score for HDAC8
is 0.36, but the best scoring cavity gets a value of 0.72, comfor-
tably within the druggable range. On rare occasions, the pocket
detection algorithm may completely fail to identify the drug
binding site. On ACE, fpocket detects the whole internal
channel system as one single and continuous cavity, thus it is
too large (up to 7700A3) to consider it as a proper definition of
the binding site. For very shallow binding sites, such as theHIV
integrase, a cavity may not be detected at all. Arguably, this is
not a bad result but a mere reflection of the nondruggable
character of the site. In summary, variability in the cavity defini-
tion step is an intrinsic limitation of the method presented here,
but constraining the druggability prediction to a very concise
zone around the experimentally known binding pocket would
forbid large scale applicability of the method. Notwithstanding
this limitation, the results in Figure 3 and Table S1 (Supporting
Information) demonstrate the predictive performance of
druggability measurements, indicating that fpocket most often
produces consistent results and that the drug score formula
manages well pocket variability.

The fact that information in the PDB is very often redun-
dant is an advantage for the method, as multiple predictions
can be obtained for a given site. Druggability predictions can
then be based on the average score (with a cutoff of 0.5), but

if the associated standard deviation is large, it may be
advisible to take the value for the top scorers instead. Inspec-
tion of Figure 3 (red lines) indicates that, in this case, a cutoff
value of 0.7 provides better discriminating power between
the druggable and nondruggable sets.

Protein flexibility may also be a source of variability. For
instance, the PDE4Dbinding site can be exposed to solvent or it
may be closed due to interactions between the UCR2 domain
and the catalytic domain. Interestingly, this conformational
change may influence druggability, as a recent paper27 shows
that allosteric modulators binding to the former state have
improved side effects compared to known PDE4D inhibitors.
All binding sites containing the allostericmodulatorwere scored
(six pockets originally not included in the test set), yielding a
higher and less variable drug score than the open conformations
(0.55( 0.12 and 0.4( 0.28, respectively). Another system, not
originally included in the druggability data set, for which con-
formational changes havebeenassociated todifferentdegreesof
druggability is renin.28 We have therefore calculated the drugg-
ability on structure 2BKS, which contains two monomers.
Chain A has no inhibitor and adopts the conformation that,
as stated by Davis et al., is less suitable for drug discovery.28

Nevertheless, it should be noted that aliskiren is an approved
drug targeting this conformation.29 On chain B, ligand binding
induces opening of a hydrophobic subpocket (Figure 4), alleg-
edly making it more druggable. The score obtained was 0.9 and
0.93, respectively. So in this case the structural rearrangements
do not alter significantly the druggability prediction, which
suggests that thedifficulty to developdrugs from the closed con-
formationmay be related to the chemical scaffold of the inhibi-
tors (peptidomimetics) rather than to the physical-chemical
properties of the binding site.

Another protein yielding variable predictions is the drug-
gable carbonic anhydrase. However, here the prediction
error is due to the fact that many structures contain twice
the same ligand, one in the actual binding site and a second

Figure 3. Prediction of druggability on all structures of the DD. Error bars correspond to mean prediction( standard deviation. For details
and full list of protein name abbreviations, refer to Supporting Information.
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one in a more superficial cavity (e.g., PDB codes 2QOA,
2NNS). As the ligand is used to identify the binding pocket,
two completely different binding sites are thus scored. Sa-
tisfactorily, they yield opposing drug scores. Accordingly,
the variability seen on carbonic anhydrase is not a limitation
of themethodbut of the data set used to evaluate themethod.

Comparison with MAPPOD. Analyzing the results ob-
tained for the structures in the Cheng data set, few noticeable
differences can be observed with the MAPPOD score.6 Pro-
teins like HIV RT (NNRTI site), COX2, CDK2, MDM2,
CYP450_121, EGF, PDE5A, acetylcholinesterase, p38, and
others are clearly classified as druggable by both methods.
Nevertheless, the scores of one protein relative to another do
not correlate between models, reflecting the fact that our
score is a binary classifier whereas theMAPPOD value aims at
predicting the maximal binding affinity for the binding site.
Agreement is also obtained for the nondruggable proteins
cathepsin K, caspase 1 (ICE-1) and PTP-1B, which yield
rather low druggability scores. As mentioned above, HIV
Integrase has a very shallow binding site that is not even
identified by fpocket, indicating that the binding site is not
buried enough to wrap a small molecule.

Regarding proteins binding prodrugs, results show a clear
separation between druggable binding sites and such “diffi-
cult” to target binding sites, again in consonance with the
MAPPOD score. Considering that druggability score was
trained as a bimodal predictive model and none of the
prodrug binding sites was used during training or validation,
classification of proteins in this category in the nondruggable
class is a desirable behavior of the model. Particularly
encouraging is the case of thrombin, which receives a score of
0.5. As discussed by Halgren,11 dabigatran etexilate, a pro-
drug targeting thrombin, is now marketed in Europe and
Canada. Approval by the U.S. Food and Drug Administra-
tion is pending for this year.

There is an apparent discrepancy between druggability
score and MAPPOD on proteins Factor Xa and HMG-CoA
reductase. But, in fact, both proteins also yield rather low
MAPPOD scores, 100-fold lower than the following protein in
the druggable data set (DNA gyrase B). The low scores
obtained by both methods on HMG-CoA reductase can be
explained by the very polar nature of the binding site, which
forms ionic interactions with the drugs (e.g., rosuvastatin).
Factor Xa, on the other hand, has a heterogeneous and partly
shallow cavity, which could influence the low MAPPOD

score. In the present study, the low score results from the
binding site identification protocol, which yields two distinct
pockets instead of one.

In conclusion, the method presented here is able to repro-
duce results obtained by previous publications while not
focusing on the binding site of interest, which is a crucial
requirement for automated high-throughput druggability
predictions.

Wrong Predictions or Wrong Druggability Status? Some-
times, target misclassification can be directly attributed to
the ambiguous nature of the “druggability” concept. In the
case of druggable cavities with very low score, the pockets are
usually very small or host ionic interaction patterns (P-
hydroxybenzoate hydrolase, ADAM33). In other cases, the
protein forms covalent bonds with the ligand (β lactamase
and xanthine oxidase). In those cases, druggability is largely
the result of a specific chemical feature rather than a global
property of the cavity. Correct assignment of these cavities
may therefore require a completely different approach to the
one used here. For large-scale predictions, these failures
should not be significant, as the sites correspond to enzy-
matic catalytic centers whose relevance is already evident
and can be detected by other means.30 A borderline drugg-
ability score for the allosteric binding site of PTP-1B can
hardly be considered a failure given that these inhibitors are
weak31 and the binding site offers limited opportunities for
tight binding.10

Good druggability scores for nondruggable targets GST,
P4M, cytochrome P450 105A1, and glucoamylase, can be
traced to the fact that all of these proteins do have well-
defined binding sites. They were initially selected because
they are listed in the DrugBank as targets of an approved
drug and the drug-target complex is available in the PDB.
Upon detailed analysis, it was decided that the targets could
not really be considered as druggable and were included in
the nondruggable data set with the aim of improving the
balance between positive and negative data. Reasons to
reverse the original classification includedwrong drug-target
assignment in the DrugBank (e.g., P4Mwas listed as a target
of levodopa), lack of drug-likeness on the ligand part (e.g.,
the GST inhibitor ethacrynic acid), or the biological role
(e.g., GST andCYPare detoxifying enzymes). The druggabi-
lity status of these proteins is therefore debatable. Glucoa-
mylase is known to bind the oral drug acarbose with high
affinity,32,33 but because this drug acts in the intestine and is
not bioavailable, the original classification as nondruggable
byHajduk et al.34 seems adequate. In all these cases, SiteMap
also predicts the sites as druggable or difficult, never as
nondruggable. TheDCDprovides an adequate environment
to reconsider the classification of these and other proteins in
the data set.

Druggability Prediction on Apo Structures. Because of
induced-fit effects, holo structures may present a different
arrangement of the features that determine binding. In the
molecular docking field, holo structures have been shown to
provide qualitatively better results.35 As training and drugg-
ability predictions have been carried out on holo structures,
it was necessary to test the robustness of predictions on apo
structures to ensure that unused druggable cavities can be
found when screening large structural databases (Figure 4).
As shown on Table S1 (Supporting Information), the drugg-
ability score observed in holo structures is generally repro-
duced within the range of confidence in apo structures. The
main source of variability appears to be the number of apo

Figure 4. Renin druggable binding site yielding similar druggabil-
ity scores for holo and apo monomers.
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structures, which is comparatively small. In fact, there are
only two proteins with a large number of apo structures:
carbonic anhydrase and β lactamase. The latter is predicted
as nondruggable, and the average value is identical for the
apo and holo sets (0.11). The former is interesting because
it is the most populated set (83 holo and 61 apo structures),
and the results suggests that there is some information
decay as the apo structures get worst average values than
holo (0.4 ( 0.3 and 0.5 ( 0.3 respectively). Nevertheless,
the best apo cavities get druggability scores as high as the
best holo structures (close to 0.9). In the rest of the sys-
tems, the number of apo structures is insufficient to get
statistics, but the individual values fall within the range
observed with holo structures. β-2-Aadrenergic receptor/
T4 lysozyme chimera is an exception to this rule, as the
apo structures (PDB codes: 2R4R, 2R4S) have missing
residues on the extracellular side of the transmembrane
helices, where the catecholamines bind. This demonstrates
that, except in the case of grossly different cavity shapes, the
predictions are sufficiently robust to detect apo as well as
holo binding sites.

Comparison with SiteMap. Finally, the method presented
here was compared with Dscore, a recent contribution by
Thomas Halgren from Schr€odinger,11 which is, to the best of
our knowledge, the only other software available to screen
for druggable cavities out of the box. The performance of
both scores was assessed on the druggable and nondruggable
structures from the NRDD. The druggability score is inti-
mately linked to the procedure used to define the cavity;
therefore cavities are not interchangeable between programs
and have to be generated independently. SiteMap analy-
sis was run on 63 structures, as the remaining eight gave
problems when running SiteMap in an automated way.
Fixing these structures would have required manual inter-
vention, but this was not done because the goal was to
simulate an automated large-scale screen for druggable
cavities. As a result, the number of cavities differs between
methods (70 druggable, 440 total for fpocket; 63 druggable,
430 total for SiteMap). The performance metric used to
compare the methods must take into account the different
composition of the data set. We have used a normalized
enrichment factor, defined as the ratio of druggable cavities
in a given subset of the library. Figure 5 plots this value
versus the amount of selected cavities after ordering them by

decreasing druggability score/DScore. In both cases, the
enrichment factor is ideal in the beginning and remains very
good throughout. Predictive power of the druggability score
decreases sharply after 0.5, which is the expected behavior, as
this value corresponds to the inflection point in the logistic
model. The correspondingDscore at the same fraction of the
library is 1.1, coincidingwith the average value for druggable
cavities in the Dscore training set.11

In terms of performance, both methods are similarly
capable of retrieving druggable cavities from structural data-
bases. Nevertheless, fpocket present two important advan-
tages for large scale screening purposes. First, the method is
very fast (1-2 s for structures up to 450 residues compared
to a few minutes for SiteMap). Second, fpocket is comple-
tely automatic and does not need protein preparation or
selection of parameters. Additionally, the logistic scoring
scheme provides a natural cutoff for acceptable enrichment
values.

Conclusions

Considerations about druggability are becoming part of the
target selection process (see, for instance, ref 36). If the structure
is available, this can be done by visual inspection of the binding
site but, in the absence of clear guidelines, the decision may be
largely subjective. Compiling a large set of targets with their
associated druggability is an efficient way of making sure that
previous knowledge is retained, thus contributing to our under-
standing of the fundamental processes behind druggability.
Here we present the largest druggability data set to date, which
the community can freely download, edit, or extend. In compar-
ing druggable to nondruggable binding sites we find that,
contrary to previous models,6 hydrophobicity is not the sole
determinant of target druggability, as polar groups also play an
important role on the recognition of drug-like molecules. The
data set can also be used to train computational methods or to
assess their performance. Previously, computational methods
were trained to predict the druggability of known binding sites.
Here we have placed particular emphasis on the ability of the
program to automatically detect binding sites and subsequently
assess their druggability.The resulting software is state of the art
in terms of druggability prediction performance while having
the advantage of being free of charge, open source, and com-
putationally very efficient. As the druggability prediction is
directly associated to a cavity detection method, screening for
druggable cavities in large structuraldata sets is straightforward.
Application of this method to the PDB could, then, provide
insights into the druggable targetome already contained in
the structural proteome. Putative drug binding sites can then
be further analyzed by complementary methods.3,10,37 We ex-
pect that this will be a useful approach to unlock promising
yet largely unpursued mechanisms of action such as allosteric
modulation,38 protein-protein inhibitors,39 pharmacological
chaperones,40 or interfacial inhibitors.41

Materials and Methods

Data Set. Currently, one data set for assessment of drugg-
ability prediction methods was commonly used. This data set
was provided by Cheng et al.6 and was further used for valida-
tion of SiteMap druggability score.11 For a more robust valida-
tion of this method, a bigger and nonredundant data set is pro-
vided. The herein presented data set was derived using a study
published in 2004 by Vieth et al.15 In this paper, characteristic
physical properties and structural fragments of marketed oral

Figure 5. Comparison of druggability prediction performance be-
tween fpocket druggability score and SiteMap Dscore.
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drugs were derived from an extensive data set. Only orally
available marketed drugs were kept from this data set.

Next, PubChem (pubchem.ncbi.nlm.nih.gov) was used to
check whether a 3D structure of the drug in whatever protein
exists in the PDB.16 Only drugs having resolved 3D structures
were kept. Next, data was crossed with DrugBank17,18 entries
for these drugs. The DrugBank contains entries of the targets
corresponding to each drug. The known 3D structures from
PubChem Compound, corresponding to the actual target of the
drug, were kept for further analysis. Finally, structures were
checked by hand to establish whether the drug in the protein
could be classified as drug, prodrug, or if the binding site
should be considered undruggable due to missing drug likeness
of the ligand. Structures from Cheng’s data set were also added,
and the same set was enhanced by other structures for the same
proteins, resulting in the druggability data set (DD). Generally,
crystal structures with a resolution lower than 2.5 Å and
Rfree below 0.3 were kept despite some exceptions for under-
represented protein classes.

These steps allowed building up of an extensive data set
containing formajor parts druggable proteins.However, known
negative information is also very important and very difficult to
find in this field. To enhance the data set with known negative
data, the nondruggable proteins fromCheng’s data set and parts
of the data set published by Hajduk and co-workers4 was used.
Table S1 in Supporting Information summarizes the contents of
the data set as well as the prediction results.

Last, for druggable, prodrug binding and nondruggable pro-
teins, a nonredundant data set (NRDD) was established using the
BlastClust clusters from the PDB at a maximum of 70% sequence
similarity (ftp://ftp.wwpdb.org/pub/pdb/derived_data/NR/clus-
ters70.txt). For learning and validation, only well-defined known
druggable and nondruggable cavities were chosen. This was done
using the fpocket mutual overlap criterion (MOc),13 that allows
assessment if a found cavity covers well the actual ligand binding
site or not. Thus, known druggable and nondruggable cavities
needed a MOc of 1 in order to be considered for learning and
validation of a druggability scoring function.

Cavity Detection. For this study, fpocket, a highly scalable
and free open source pocket detection software package, was
used.13 Extensive usage was made especially of the dpocket
program, allowing easy extraction of pocket descriptors. The
default set of dpocket descriptors was extended by polar and
apolar pocket surface area (van der Waals surface þ1.4 Å and
van der Waals surface þ2.2 Å). The dpocket derived pocket
descriptors were further tested for suitability in the creation of a
druggability score using logistic regression.

Finally, the retained pocket descriptors are:

• The normalized mean local hydrophobic density. This
descriptor tries to identify if the binding pocket contains
local parts that are rather hydrophobic. For each apolar R
sphere the number of apolar R sphere neighbors is detected
by seeking for overlapping apolar R spheres. The sum of all
apolar R sphere neighbors is divided by the total number of
apolar R spheres in the pocket. Last, this score is normal-
ized compared to other binding pockets on the same
protein.

• The hydrophobicity score. This descriptor is based on a
residue based hydrophobicity scale published by Monera
et al.42 For all residues implicated in the binding site, the
mean hydrophobicity score is calculated and is used as
descriptor for the whole pocket. Each residue is evaluated
only once.

• The normalized polarity score. As published on http://
www.info.univ-angers.fr/∼gh/Idas/proprietes.htm, each
residue can be split in two polarity categories (1 and 2)
The final polarity score is the mean of all polarity scores of
all residues in the binding pocket. Each residue is evaluated
only once.

Druggability Score. As the NRDD contains only 45 drug-
gable and 21 nondruggable proteins, the following rule was
considered: all other cavities (not in contact with a ligand)
identified on the proteins containing at least one druggable
cavity and having a size higher than 60 R spheres (corres-
ponding to reasonably sized cavities) were also considered as
nondruggable. This rule allows to introduce decoys into the
given set of cavities in the NRDD and thus increase its size
substantially.

To train and validate the druggability score, the NRDD,
consisting of 70 druggable cavities, 16 nondruggable cavities
having aMOcof 1, and 354 decoyswas split in two. The first half
of the data was used to train the model. Training and internal
validation was performed using a 10-fold bootstrap with a one-
third/two-third training/validation ratio. First logistic models
were derived for each pocket descriptor using the glm function
from the R statistical software package,43 and according to
predictive power and stability during the 10-fold bootstrap,
these models were further considered.

In the next step, predictions coming from these “one descrip-
tor based” logistic models were associated in one common
logistic model where statistically nonsignificant descriptors or
unstablemodels were filtered out. The generalmodel is shown in
eqs 1-3 as drugscore, the single descriptor based models are
designated by the function fx(dx), where dx is a given descriptor.

drugscoreðzÞ ¼ e- z

1þ e- z
ð1Þ

z ¼ β0 þ β1f1ðd1Þþ β2f2ðd2Þþ β3f3ðd3Þ ð2Þ

fxðdxÞ ¼ e- βx, 0 þ βx, 1dx

1þ e- βx, 0 þ βx, 1dx
ð3Þ

The coefficients of the model, as shown in Table 3, were
obtained by averaging coefficients derived on each step of the
bootstrap.

The second half of NRDD was reserved for external valida-
tion (selected by random before the bootstrap run). Receiver
operator characteristics (ROC) and derivative figures shown in
this paper were produced using the ROCR package.44

Comparison with Schr€odinger SiteMap. To compare fpocket
druggability prediction performance with SiteMap Dscore, the
NRDD data set was used as benchmark. SiteMap was system-
atically launched on all structures after running the Prepwizard
protein preparation protocol of Maestro. SiteMap was run to
accept a maximum number of 10 binding sites to reproduce
prediction results published by Halgren. However, no binding
site restrictions were applied. A binding site was successfully
recognized if at least 20 site points were less than 1.5 Å away

Table 3. Constants of Druggability Score Model

descriptor coefficient

mean

valuea
standard

deviation/meanb

intercept ss0 -6.238 -0.095

mean local hydrophobic

density (normalized)

ss1 4.592 0.154

hydrophobicity score ss2 5.717 0.170

polarity score (normalized) ss3 3.985 0.459

intercept ss1,0 -5.141 -0.170

mean local hydrophobic

density (normalized)

ss1,1 6.579 0.173

intercept ss2,0 -2.669 -0.168

hydrophobicity score ss2,1 0.056 0.216

intercept ss3,0 -2.445 -0.238

polarity score (normalized) ss3,1 2.762 0.330
aMean values refer to mean constants after a 10-fold bootstrap run.

bThe ratio between the standard deviation and the mean value of the
constant assess the variability of the constant during the bootstrap.
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from any of the atoms of the known ligand. Unlike the training/
validation procedure, all other binding sites on druggable and
nondruggable proteins were considered as decoys for both
algorithms.

For this comparison, fpocket was run on the NRDD and the
druggability score calculated for each binding site. A binding
site was considered druggable/nondruggable according the rules
specified in the previous part of Materials and Methods.

Pocket Surface Calculations. To assess the importance
of polar atoms in known drug binding sites (bound struc-
ture), surface calculations were performed in the following way.
The set of pocket atoms were identified as the atoms within at
most 5.5 Å from the nearest ligand atom. For this set of atoms,
the portion of van derWaals surface nonoccluded by surround-
ing atoms was calculated.

To calculate an ASA close to the solvent-accessible surface
area, the van der Waals radius of each pocket atom was
increased by 1.4 Å for the surface calculation.

Next, atom fattening was performed, increasing the van der
Waals radius correction from 1.4 to 2.2 Å in steps of 0.1 Å. For
each modified van der Waals radius, the van der Waals surface
of the pocket was calculated. By definition, in concave portions
of the protein surface, the van derWaals surface decreases upon
atom fattening. In the protein binding sites assessed here, these
surfaces decreased linearly. Because of this linear behavior in the
radius range considered (van derWaalsþ1.4 Å to van derWaals
þ2.2 Å), an automatic construction of linear regression based
models is possible and reliable. Thus for the polar and apolar
ASA profiles, two models with two parameters (slope and
intersect) for each can be obtained. The behavior of these
parameters was assessed throughout this study, enabling direct
access to the concavity of the pocket for polar and apolar atoms
(slope) and the ratio of polar versus apolar atoms (ratio of
intersects). The principle is shown in Figure 6. Furthermore, the
ratio between the apolar and polar slope of the concavity
profiles is of importance in this work and will be referenced to
concavity profile ratio. The concavity profile calculation was
implemented for running onNVIDIA graphics processing units
using python, the excellent Biskit structural bioinformatics
framework,45 and PyCUDA.46
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